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ABSTRACT

The goal of the MLSP 2014 Schizophrenia Classification
Challenge was to automatically diagnose subjects with schizo-
phrenia based on multimodal features derived from their
magnetic resonance imaging (MRI) brain scans. This chal-
lenge took place between June 5 and July 20, 2014, and
was organized on Kaggle. We present how this classification
problem can be solved in terms of a Bayesian machine learn-
ing paradigm known as Gaussian process (GP) classification.
The proposed solution achieved an AUC score of 0.928, and
it ranked first on the Kaggle private leaderboard.

Index Terms— Schizophrenia, magnetic resonance imag-
ing, Gaussian process classification

1. INTRODUCTION

Schizophrenia is a chronic mental disorder that is often char-
acterized by abnormal social behavior and abnormal inter-
pretations of reality. Schizophrenia is associated with small
differences in brain structure and activity, even though many
details remain largely unknown. Yet, state-of-the-art brain
imaging techniques provide data that can be used for assist-
ing the diagnosis of schizophrenia.

The goal of the MLSP 2014 Schizophrenia Classification
Challenge [1] was to automatically diagnose subjects with
schizophrenia using multimodal features derived from their
magnetic resonance imaging (MRI) brain scans. The win-
ning proposition was based on a Gaussian process (GP, see,
e.g., [2]) classifier. Gaussian processes enable flexible model
specification for Bayesian classification, and their theoretical
properties are well suited for this kind of modeling.

In binary GP classification, the observations are consid-
ered to be drawn from a Bernoulli distribution. The proba-
bility is related to the latent field via a sigmoid function that
transforms it to a unit interval. A GP prior with a covariance
function defined by a sum of a constant, linear, and Matérn
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kernel was placed over the latent functions. The model was
trained by sampling using the GPSTUFF toolbox [3].

In this paper, we briefly present the data, the classification
methods and model setup, and provide details on how repli-
cate the winning solution. Finally, the solution is discussed
and some future development ideas are given.

2. MATERIALS AND METHODS

2.1. Data and preprocessing

The data consist of two sets of information collected by dif-
ferent medical imaging modalities: Functional Network Con-
nectivity (FNC, [4]) and Source-Based Morphometry (SBM,
[5]) loadings. The FNC were derived form functional mag-
netic resonance imaging (fMRI) scans, and can be seen as
a functional modality feature describing the subject’s overall
level of ‘synchronicity’ between brain areas. SBM loadings
are derived from structural MRI scans, and they indicate the
concentration of grey matter in different regions of the sub-
ject’s brain.

Data collection (partially described in [6]) was per-
formed at the Mind Research Network, and funded by a
Center of Biomedical Research Excellence (COBRE) grant
5P20RR021938/P20GM103472 from the NIH to Dr. Vince
Calhoun. Both the training data and test inputs are available
on Kaggle [1].

We denote the training data by D = {(xi, yi)}ni=1. The
training data consist of n = 86 subjects, where xi ∈ R410

(378 from the FNC and 32 from the SBM, ignoring the con-
stant first terms). The test data D∗ = {(x∗,i, y∗,i)}n∗

i=1 con-
sists of n∗ = 119,748 subjects (artificially inflated to prevent
hand labeling) with unknown labels y∗. As a preprocessing
step, we normalize each dimension in the inputs xi and x∗,i
by dividing them by the standard deviations from training in-
puts. The labels were transformed to yi ∈ {−1, 1}.

2.2. Gaussian process classification

The winning model was based on Gaussian process classifi-
cation [2], where the latent functions are assumed to be re-
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alizations of a Gaussian process. In binary GP classifica-
tion with observations, yi ∈ {−1, 1}, i = 1, . . . , n, associ-
ated with inputs {x}ni=1, the observations are considered to
be drawn from a Bernoulli distribution with a success proba-
bility p(yi = 1 | xi). The probability is related to the latent
function via a sigmoid function that transforms it to a unit
interval. We use a probit transformation that defines the like-
lihood model

p(yi | f(xi)) = Φ(yif(xi)) =

∫ yif(xi)

−∞
N (z | 0, 1) dz,

where Φ(·) is the Gaussian cumulative distribution function.
We use a Gaussian process to define a prior distribution over
the latent functions

f ∼ GP(0, k(x,x′)).

The latent Gaussian process model is characterized by its
covariance function (kernel) k(·, ·). We want to account for
any linear structure plus some additional short-scale non-
linearities in the latent space. Therefore we set up the co-
variance function as a linear combination of three separate
covariance functions:

k(x,x′) = kconst.(x,x
′) + klinear(x,x

′) + k
ν=5/2
Matérn (x,x′),

where the individual covariance functions were defined as
(see [2] for a similar parametrization):

kconst.(x,x
′) = θ1,

klinear(x,x
′) = θ2 x

Tx′, and

k
ν=5/2
Matérn (x,x′) = θ3

(
1 +

√
5r

θ4
+

5r

3θ24

)
exp

(
−
√

5r

θ4

)
,

where r = ‖x− x′‖. The first two covariance function com-
ponents (a constant and linear covariance function) define an
affine model, whereas the last covariance function gives the
model flexibility to adopt to some non-linearities. This partic-
ular Matérn covariance function holds the assumption of the
model functions being continuous and rather smooth (twice
differentiable). The Matérn class has previously turned out to
be suitable for spatio-temporal GP modeling in fMRI appli-
cations (see, e.g., [7–9]).

The hyperparameters θ = {θ1, θ2, θ3, θ4} were given
the following hyper-priors: θ1, θ2, θ3 ∼ Log-Uniform, and
θ4 ∼ t4(0, 1). The hyperparameters were initialized as
θ = {1, 1, 1, 0.01}.

The training was started by running a Laplace approxima-
tion scheme on the model until convergence (see the codes),
and then the final training was performed by sampling (1000
samples, 91 after removing burn-in and thinning). We used
Elliptical Slice Sampling [10] for the latent functions, and the

Surrogate Slice Sampler [11] for the hyperparameters. These
samplers are the defaults in GPSTUFF [3], and they do not
require any parameter tuning. The class label probabilities
p(y∗,i = 1 | D,x∗,i) for the test set can now be predicted
by the trained model by integrating over the latent functions.
For more information and discussion on the methods, see the
toolbox manual [12].

2.3. Implementation

To implement GP classification we used the GPSTUFF tool-
box [3] for Mathworks Matlab (and Octave):

• http://becs.aalto.fi/en/research/bayes/gpstuff

It is our in-house-developed software package for Gaussian
process modeling. All codes were tested in Matlab 8.2.0.701
(R2013b), and GPSTUFF version 4.5 (release 2014-07-22,
available online, and distributed under the GNU General
Public License) in Ubuntu Linux.

Codes for replicating the winning submission are avail-
able online:

• http://github.com/asolin/MLSP2014-kaggle-challenge

3. DISCUSSION AND CONCLUSIONS

The GP classifier trained following the previously described
steps received a final private leaderboard AUC score of
0.92821 on Kaggle and hence winning the competition.
The solutions scoring second and third were based on an
SVM classifier (scoring 0.923/0.647 on the private/public
leaderboards) and Distance Weighted Discrimination (scor-
ing 0.913/0.844), respectively.

This particular GP classifier model was chosen by trying
out a couple of models and comparing their performance
by leave-one-out cross-validation (LOOCV). This model
did show promising performance using LOOCV, but the
score (AUC) on the public leaderboard (calculated on ap-
proximately 52% of the data) on Kaggle was only 0.70536.
This sort of discrepancy is not uncommon in fields of study,
where data is scarce, thus the limited size of the test data
set did clearly affect the coherence of the public and pri-
vate leaderboard scores, making it difficult to predict the true
performance of the method based on the public score.

The present classifier could be improved in several ways.
One evident choice of improvement would be to consider two
separate length-scale hyperparameters for the FNC and SBM
loadings, rather than normalizing the data. It is also generally
well-known [12] that in GP classification MCMC is more ac-
curate than approximative inference methods such as Expec-
tation propagation (EP) or the Laplace approximation. How-
ever, the inference times line up in the opposite order. There-
fore, for example EP could be a viable option to speed up the
inference in this case.

http://becs.aalto.fi/en/research/bayes/gpstuff
http://github.com/asolin/MLSP2014-kaggle-challenge
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