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INTRODUCTION

I The flexibility of Student-t processes (TPs) over
Gaussian processes (GPs) robustifies inference in
noisy data [1,2].

I Predictive covariances explicitly depend on the
training observations.

I For an entangled noise model, the canonical-form TP
regression problem can be solved analytically [2].

I The naive TP and GP solutions share the same
cubic computational cost in the number of training
observations.

I We show how a large class of temporal TP
regression models can be reformulated as state
space models.

I We derive a forward filtering and backward
smoothing recursion for doing the inference
analytically in linear time complexity.

STUDENT-t PROCESSES

I In TP regression [2], we predict the output f (t∗) with a
known input t∗ ∈ R, given
Dn = {(tk , yk) | k = 1,2, . . . ,n}:

f (t) ∼ T P(0, k(t , t ′), ν),
yk = f (tk).

I The direct solution to the TP regression problem
gives predictions for the latent function

E[f (t∗)] = kT
∗K
−1y,

V[f (t∗)] =
ν − 2 + yTK−1y

ν − 2 + n

(
kθ(t∗, t∗)− kT

∗K
−1k∗

)
.

I The noise model is included in the covariance
function: Kij = kθ(ti , tj) + σ2

nδi ,j.
I The computational scaling is O(n3) due to the matrix

inverse.
I We call this the ‘naive’ way of solving the inference

problem and derive an alternative approach in what
follows.

STATE SPACE MODEL

I Stationary Gaussian processes with a rational
spectra can be converted to in law equivalent state
space stochastic differential equations (SDEs) [3].

I These state space SDEs can be written as
df(t)
dt

= Ff(t) + Lw(t), and f (tk) = Hf(tk),

where f(t) =
(
f1(t), f2(t), . . . , fm(t)

)T holds the m
stochastic processes, and w(t) is a white noise
process with spectral density Qc, and initial state
f(0) ∼ N(0,P0).

I A TP can be constructed as a scale mixture of state
space form SDEs by setting the spectral density to
γQc, and using the initial state f(0) ∼ N(0, γP0),
where γ is an inverse gamma random variable.

I The solution can be written out in closed-form at the
specified time points tk , k = 1,2, . . ., as f(tk) = fk
such that f0 ∼ N(0, γP0) and

fk = Ak−1fk−1 + qk−1,

where qk−1 ∼ N(0, γQk−1).
I The entangled noise model is included by

augmenting it into the state.

STUDENT-t FILTERING
AND SMOOTHING

I Filtering and smoothing [4] in state space models
refer to the Bayesian methodology of computing
posterior distributions of the latent state based on a
history of noisy measurements.

I Filtering distributions are the marginal distributions of
the state fk given the current and previous
measurements up to the point tk :
fk | Dk ∼ MVT(mk |k ,Pk |k , νk) (see Alg. 1).

I Prediction distributions are the marginal distributions
of the future state following the previous observation:
fk+j | Dk ∼ MVT(mk+j |k ,Pk+j |k , νk) (see Alg. 1).

I Smoothing distributions are the marginal distributions
of the state given all the measurements in the
interval: fk | Dn ∼ MVT(mk |n,Pk |n, νn) (see Alg. 2).

I The filter gives the marginal likelihood for
hyperparameter optimization.

I The smoothing outcome corresponds to the naive TP
regression result.
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Algorithm 1: Student-t filter.
for k = 1, 2 . . . , n do

Filter prediction:

mk|k−1 = Ak−1mk−1|k−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1

+ γk−1Qk−1

Filter update:

vk = yk −Hkmk|k−1

Sk = HkPk|k−1H
T
k

γk =
γk−1

νk − 2
(νk−1 − 2 + vT

kS
−1
k vk)

Kk = Pk|k−1H
T
kS
−1
k

mk|k = mk|k−1 +Kkvk

Pk|k =
γk

γk−1

(
Pk|k−1 −KkSkK

T
k

)

end

Algorithm 2: Student-t smoother.
for k = n− 1, n− 2, . . . , 1 do

Smoother prediction:

mk+1|k = Akmk|k

Pk+1|k = AkPk|kA
T
k + γkQk

Smoother update:

Gk = Pk|kA
T
kP
−1
k+1|k

mk|n = mk|k +Gk(mk+1|n −mk+1|k)

Pk|n =
γn

γk

(
Pk|k −GkPk+1|kG

T
k

)

+GkPk+1|nG
T
k

end

As summing covariance functions, k(t, t′) = kθ(t, t′) +
knoise(t, t′), under the kernel formalism corresponds to
stacking state variables in the state space model, in-
cluding the entangled noise contribution can be ac-
complished by augmenting the white noise process
into the state variable. This leads to the following
joint state space model: F = blkdiag(Fθ,−∞) and
P0 = blkdiag(Pθ,0, σ

2
n), and the observation model

H = (Hθ, 1) (training) and H = (Hθ, 0) (prediction
of the latent function).

3.3 Sequential Inference

Filtering and smoothing (see, e.g., [6]) in state space
models refer to the Bayesian methodology of comput-
ing posterior distributions of the latent state based on
a history of noisy measurements. Let the observed
data be denoted as Dn = {(ti, yi) | i = 1, 2, . . . , n}.
In Bayesian filtering and smoothing the interest is put
into the following marginal distributions:

• The filtering distributions are the outcome of the
Bayesian filter. They are the marginal distribu-
tions of the state fk given the current and previ-
ous measurements up to the point tk: fk | Dk ∼

MVT(mk|k,Pk|k, νk).

• The prediction distributions, which can be com-
puted with the prediction step of the Bayesian
filter, are the marginal distributions of the fu-
ture state fk+j , for j = 1, 2, . . . steps follow-
ing the previous observation: fk+j | Dk ∼
MVT(mk+j|k,Pk+j|k, νk).

• The smoothing distributions computed by the
Bayesian smoother are the marginal distribu-
tions of the state fk, k = 1, 2, . . . , n given all
the measurements in the interval: fk | Dn ∼
MVT(mk|n,Pk|n, νn). The smoothing solution
corresponds to the naive solution in Equation (3).

Given the class of Student-t processes in Theorem 3.2,
the TP regression problem in Equation (3) can be
solved by sequentially solving a forward filtering prob-
lem, and updating the filtering outcome by running a
backward smoother. This is constructed by sequen-
tially predicting the next step as given by the link in
Theorem 3.2, and updating the state as by Lemma 2.3.

The inference scheme is presented as a closed-form
recursion in Algorithm 1 (filter) and Algorithm 2
(smoother). The initial degrees of freedom are ν0 = ν,
scaling factor γ0 = 1, prior state mean m0|0 = 0,
and prior state covariance P0|0 = P0. The smoother
is initialized by the filtering outcome. The degrees
of freedom parameter is updated as νk = νk−1 + nk,
where nk = 1, if there is an update on time-step k,
and nk = 0 otherwise (for prediction of test points).
Prediction of test inputs corresponds to including t∗ in
the filtering and smoothing sweeps, but skipping the
filter update for the point. For training the hyperpa-
rameters, the negative log marginal likelihood can be
evaluated sequentially as a by-product of the filtering
recursion in Algorithm 1:

L(θ) =
n∑

k=1

{
1

2
log((ν − 2)π) +

1

2
log(|Sk|)

+ log Γ

(
νk−1

2

)
− log Γ

(
νk
2

)
+

1

2
log

(
νk−1 − 2

ν − 2

)

+
νk
2

log

(
1 +

vT
kS−1

k vk
νk−1 − 2

)}
, (10)

where vk and Sk are the innovation mean and covari-
ance evaluated by the filter update step. The par-
tial derivatives of the negative log marginal likelihood
function requires derivatives of the entire filtering re-
cursion to be calculated. These rather lengthy equa-
tions are included in the supplementary material. The
computational cost scales as O(nm3), which makes
this very beneficial if m� n.

CONCLUSIONS

I We have generalized the connection between
Gaussian process regression and Kalman filtering to
more general elliptical processes and non-Gaussian
Bayesian filtering.

I This link enables the use of efficient sequential
inference methods to solve TP regression problems
in O(n) time complexity.

I An example implementation is available on the
author web page:

http://arno.solin.fi
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Demonstration of the flexibility of the Student-t process
(blue curves) in comparison with a Gaussian process

(red curves) with the same hyperparameters.
The shaded regions illustrate

the 95% credible intervals.

TRACKING OF A MOVING VEHICLE

·1
0
4

−5 km 0 km 5 km

−
1
0

k
m

−
5

k
m

0
k
m

5
k
m

1
0

k
m ·1

0
4

−5 km 0 km 5 km

−
1
0

k
m

−
5

k
m

0
k
m

5
k
m

1
0

k
m

Gaussian Student-t

Interpolation of missing GPS observations by two-dimensional
GP regression (Gaussian smoothing) and TP regression
(Student-t smoothing). The unknown ground truth is shown by
dots and the colored patches illustrate the credible intervals up
to 95%.

STOCK PRICE DATA
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TP prediction (with 95% credible intervals)
GP prediction (with 95% credible intervals)

The log share price of Apple Inc. (n = 8 537) modeled by
GP/TP with a covariance function sum of a constant, linear,
Matérn (smoothness 3/2), and exponential covariance function.
The main difference comes from the different hyperparameters.

COMPUTATIONAL EFFICIENCY
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Demonstration of the computational benefits of the state space
model in solving a TP regression problem for a number of data
points up to 10 000.


